
Visual Classworks DDE Interface

Ó 1995 Step Ahead Software Pty Ltd

1. TERMINOLOGY

2. EXAMPLE WORD MACROS

3. DESIGN

3.1 Model

3.2 Iterating Example

3.3 Data extraction and Executing Commands
3.3.1 Extracting data from the current object
3.3.2 Executing a command on the current object

1Terminology
Prior to leaping into the wonders of extracting design information from the tool via DDE it is
important to get an understanding of a few DDE terms. A DDE communication takes place between
two applications. One must take on a client role and the other a server role. Typically the DDE
server is the one supplying the data and the client is the one consuming the data. In this case the tool
acts as the server because it is providing the data and Word or some other DDE capable application is
the DDE client.

Microsoft Word has a basic language built into it called WordBasic. Macros (functions) can be
written in WordBasic to control and create documents. WordBasic supplies a set of DDE functions
including DDEInitiate, DDETerminate, DDERequest and DDEExecute. Other Windows word
processors may also supply a set of DDE functions. You could even write your own DDE client in C
or C++ to communicate with the tool.

An example Word macro that communicates with the tool via DDE is included in the oodesign.dot
template. The macro name is ExtractDesign. It can be opened by selecting Tools|Macros and double
clicking on the ExtractDesign entry.

2Example Word Macros
The Microsoft Word document template oodesign.dot contains two macros: ExtractDesign and
ProgressReport which are simple examples showing how to extract information from the tool. To use
these macros you should copy oodesign.dot to your Word for Windows template directory. This is
typically C:\MSOFFICE\WINWORD\TEMPLATE.

Open up the Visual Classworks with your design loaded and then run one of the macros using Tools|
Macro from within Word. The macros will create a new document and fill it with information from
your currently loaded model.

1

3Design
Before one can extract design information it is important to have a knowledge of what information is
available and how that information is stored.

3.1Model
The model used in the tool consists of two fundamental architectural entities: objects and containers:
Objects contain data and can have certain commands executed on them. Containers are collections of
objects. Objects themselves can have containers which hold other objects. The object types in the
model are listed below:

Table 1. Object Types and the names used to refer to them in DDE.

Object Type DDE Name Description

Model model The currently open design in the tool.

Category category A logical grouping of related classes - only one per model at this
stage

Class class A class in the category

Base Class baseClass A base class of the current class

Data data A data member of the current class

Method method A method of the current class

Relation relation ***An relationship (not inheritance) with another class.

***Relations are not implemented in Version 4.0 Beta.

A client never sees containers - they work with iterators which are internal structures that can
navigate through containers. Each iterator maintains an internal cursor which points to the current
object in its collection. Commands are provided to move the cursor to the next or previous object in a
collection. Each time an object is navigated to any iterators on containers that objects of that type
have are destroyed. The set up iterator command (itObjectName - see below) must be called for the
new object before iterating on one of its containers.

While ever a model file is loaded in the tool there is always a valid model. In this version of the tool
only one Category object is supported.

An understanding of the containment hierarchy (how objects contain one another) is prerequisite and
extremely helpful in understanding how a client would navigate and access data in a model.

Model has_many Category has_many Class has_many Base Class
 has_many Data
 has_many Method
 has_many Relation

3.2Iterating Example
Let’s say that the Category iterator is pointing to a valid category object (there is only one category at
this stage in all designs). The client can execute itClass which will create an iterator on the classes in
the category. The interator’s cursor will point to the first class in the container or NULL if there is no
classes in the category. If there is no class in the category then DDE_FNOTPROCESSED will be
returned from the DDEExecute(itClass) command. A client must use this return value to determine if
there is a valid object from which data can be extracted. In WordBasic the return value can not be

2

tested directly, rather an error will be generated if DDE_FNOTPROCESSED so the code must be
enclosed in an On Error construct like this:

On Error Goto ErrorHandler

DDEExecute(channel, "category itClass")

‘ do interesting stuff with current class here

...

Goto Done

ErrorHandler:

' Do nothing

Done:

‘ Move onto next bit

Once itClass has been executed a user can get data from the current class by calling a set of access
functions including: class name, class description.

To iterate to the next class a client executes class next or to the previous class by executing
class previous. Both of these functions will return DDE_FACK or DDE_FNOTPROCESSED
depending on whether the iterator is left pointing to a valid class object.

Whenever an iterator moves to another object all of the iterators that were created while the cursor
was at the original object are destroyed. A client must issue another itXXX command to iterate
through a container in the new object. Iterators above the original object in the containment hierarchy
remain intact.

For example: the Category’s class interator remains intact when a class’ data iterator moves to the
next data member. When the class iterator moves to the next class any BaseClass, Data, Method or
Relation iterators are destroyed.

3.3Data extraction and Executing Commands
It is important to note the difference between extracting data and executing commands. Data
extraction involves getting data from the server and uses the DDERequest (in WordBasic) or
equivalent function . The execution of commands performs some internal action in the DDE server
(the tool) and does not return anything other than a succeed or fail status. Command execution uses
the DDEExecute (in WordBasic) or equivalent function.

3.3.1Extracting data from the current object
To access data of the current object in an iterator perform a DDERequest with the following
argument format:

ObjectType DataName
For example to get a class’ Name use:

DDERequest(“class name”)

3.3.2Executing a command on the current object
To execute a command on an object use the following argument form:

ObjectType Command
For example to set up an iterator for the data members in a class:

DDEExecute(“class itData”)
The following lists the data and commands associated with each of the object types that can exist in
the design. Note that for certain object types there are no commands.

3

Table 2. Model Data and Commands

Data String returned

name Name of this model (Set in Options|Project)

designer Name of the designer of this model. (Set in Options|Project)

Commands Action

itCategory Setup an iterator on the categories in this model.

Table 3. Category Data and Commands

Data String returned

copyright Copyright notice for this category (Set in Options|
Project)

Commands Action

itClass Setup an iterator on the classes in this category.

next Iterate to the next category in the model.

Table 4. Class Data and Commands

Data String returned

name Name of the class

file Name of file containing class minus extension

hext Header file extension

cext Source file extension

isAbstract “t” for true or “f” for false

isTemplate “t” for true or “f” for false

isLib “t” if library “f” if not.

tempArgs Template arguments

storage “persistent” or “transient”

phase 2 = analysis, 4 = design, 6 = implementation, 8 =
testing, 10 = complete

description Description of the class

Commands Action

next Iterate to the next class in the category - fails if no more
classes

itBaseClass Setup an iterator on the base classes of this class

itDataMembe
r

Setup an iterator on the data members of this class

4

itMethod Setup an iterator on the methods (functions) of this class

itRelation Setup an iterator on the relations of this class

Table 5. Base Class Data and Commands

Data String returned

access returns “public” or “protected”

virtual returns “virtual” if it is a virtual base class or empty string “” if
not.

Table 6. Data member Data and Commands

Data String returned

name Name of the data member

type Type of the data member

access “public”, “protected” or “private”

phase 2 = analysis, 4 = design, 6 = implementation, 8 =
testing, 10 = complete

description Description of the data member

Table 7. Method Data and Commands

Data String returned

name Name of the method

type Type of the method

parameters Parameters of the method

access “public”, “protected” or “private”

dec declaration as it appears in the code

phase 2 = analysis, 4 = design, 6 = implementation, 8 =
testing, 10 = complete

description Description of the method

Relations are not available in the 4.0 beta

Table 8. Relation Data and Commands

Data String returned

thisCard Cardinality of this class with respect to the other: “one” or “many”

thisRole Role name of this class with respect to the other

thatClass Other class involved in this relationship

thatCard Cardinality of the other class with respect to the this one: “one” or
“many”

thatRole Role name of the other class with respect to this

5

6

	1 Terminology
	2 Example Word Macros
	3 Design
	3.1 Model
	3.2 Iterating Example
	3.3 Data extraction and Executing Commands
	3.3.1 Extracting data from the current object
	3.3.2 Executing a command on the current object

